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Abstract—In radio wave propagation simulations there is a
need for modeling antenna patterns. Both the transmitting and
the receiving antenna influence the wireless link. We use spherical
harmonics to compress the amount of measured data needed for
complex antenna patterns. We present a method to efficiently
incorporate these patterns into a ray tracing framework for
radio wave propagation. We show how to efficiently generate
rays according to the transmitting antenna pattern. The ray
tracing simulation computes a compressed irradiance field for
every point in the scene. The receiving antenna pattern can then
be applied to this field for the final estimation of signal strength.

Index Terms—Antenna radiation patterns; Radio propagation;
Ray tracing

I. INTRODUCTION

For propagation simulations to be accurate, the radiation

patterns of both the transmitting as well as the receiving an-

tenna are very important. Most antennas have directional char-

acteristics, however many simulations still assume isotropic

antennas. There are several problems to overcome when one

wants to implement full support for directional antennas in a

ray tracing framework. First of all, antenna pattern measure-

ments often consist of thousands of data samples. Sampling

those antenna patterns for ray shooting at a transmitting

antenna (Tx) is costly. Second, computing the product of an

irradiance field with a receiving antenna (Rx) pattern can

become computationally very expensive as well.

We propose to use spherical harmonics (SH) for both the

Tx and Rx antenna pattern as well as for the irradiance field

computed by the ray tracing simulation. The SH basis allows

for fast sample warping of the rays launched at the Tx antenna.

It also allows us to compute the product of the irradiance field

and the Rx antenna, giving us an entirely direction dependent

representation of the received signal strength.

II. RELATED WORK

Modeling antenna patterns has already been researched.

Most similar to our approach are the works of Landmann et

al. [1] and Rahola et al. [2]. While achieving good results

in reconstructing patterns, Landmann’s approach has the dis-

advantage of not choosing a basis on the sphere. Depending

on the rotation of the antenna, the approximation quality of

their Effective Aperture Distribution Function (EADF) varies.

This is not the case in the SH basis. Rotations are easily

achieved, without loss of accuracy. Rahola only describes

how to express antenna patterns in the SH basis, but does

not continue to explain how to incorporate this into a radio

propagation framework.

Another method of synthesizing antenna patterns is given

by Chang [3]. Here, the spherical Bessel functions are used

as basis functions.

An application of a system supporting arbitrary antenna

patterns is given by Sheth et al. [4]. The authors present a

method of limiting the covered area of WiFi base stations by

using directional antennas and the simulation of those.

Similarly, Boerman et al. [5] explored reconfigurable an-

tenna patterns in MIMO communication systems. Being able

to model different antenna patterns is vital in this kind of

research. Another example of this is presented by Gunnarsson

et al. [6], where simple augmentation of HSPA and LTE

antenna patterns are used to predict the performance of real

networks.

In this work we will concentrate on the antenna pattern

models and their integration into ray tracing frameworks.

The impact of this on network simulations remains to be

researched.

III. SPHERICAL HARMONICS

Spherical harmonics form an orthonormal basis of the

square-integrable functions L2(S) on a sphere. As such they

have been used widely as an efficient method for approxi-

mately and compactly representing spherical functions. A good

practical guide for using SH in the context of ray tracing (for

rendering) has been presented by Green [7]. The basis function

for degree l ≥ 0 and order m (with −l ≤ m ≤ l) is defined

as:

yml (θ, φ) =











√
2Km

l cos(mφ)Pm
l (cos θ) m > 0

K0

l P
0

l (cos θ) m = 0√
2Km

l sin(−mφ)P−m
l (cos θ) m < 0

(1)

Where Km
l is a normalization term and Pm

l are the associ-

ated Legendre polynomials. The different degrees l represent

functions of different frequencies on the sphere. The process

of computing the representation of a spherical function f(s)
in the SH basis is called projection, and gives us the SH

coefficients cml :

cml =

∫

S

f(s)yml (s)ds (2)
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Fig. 1. Intensity plots of the three antenna patterns we used in our experiments. From top to bottom: Plaster, PULA, SPUCA. The plots show (from left to
right) the reconstruction from the spherical harmonics, the absolute error between the measurement and the reconstruction and a volume rendering.

The coefficients can be used to reconstruct a low frequency

approximation of the original function f(s):

f̃(s) =

n−1
∑

l=0

l
∑

m=−l

cml yml (s) (3)

By constraining the degree of the reconstruction, we can

achieve a compression of the original function. A low degree

allows us to represent low frequency functions, such as rela-

tively smooth antenna patterns. We use the SH representation

for both the Tx and the Rx antenna, as well as for encoding the

irradiance field at each voxel in our simulated environment.

IV. ANTENNA PATTERNS

The radiation pattern of an antenna significantly influences

the link between two wireless stations. Simple dipole antennas

radiate radially symmetric, with the highest gain orthogonally

to the antenna. Other antenna designs allow a higher direction-

ality and thus a higher efficiency and less interference with

neighboring stations. Including such patterns in a propagation

simulation adds to its accuracy.

Here we will describe how to efficiently incorporate arbi-

trary antenna patterns into a general ray tracing framework,

and in particular into our photon path map algorithm [8].

The input for our work is some antenna pattern a(θ, φ),
measured using some probe that allows for measurement of

the pattern in both azimuth φ and inclination θ. Typically about

8,000 samples are used for this. To get a continuous, compact

and efficient representation we choose to use the spherical

harmonics basis for approximating the antenna patterns. We

use Equation (2) to compute a vector of coefficients for both

the Tx and Rx antenna, using stratified Monte Carlo inte-

gration. Since the measured samples usually lie on a regular

grid on the sphere and the Monte Carlo samples do not, we

use the following algorithm for the projection. We do not use

the measured samples, since we would have to estimate their

distribution. Furthermore the Monte Carlo approach allows us

to use arbitrary sample distributions.

We put all the measured samples in a kd-tree. Then we

generate N stratified Monte Carlo samples si ∈ {0 . . . π} ×
{0 . . . 2π}. For every sample, we compute an average knn(si)
of the k nearest neighbors. This gives us an interpolated

function value of the measured pattern. We can then use Monte

Carlo integration to compute the coefficient of level l and order

m as:

cml ≈ 4π

N

N
∑

i=1

knn(si)y
m
l (si) (4)

A. Transmitting Antenna

The main problem for all ray tracing based radio wave

propagation algorithms is to generate rays on the Tx antenna,

according to the antenna pattern. This amounts to a sampling

problem of a probability distribution function (PDF) p(θ, φ),
which is proportional to the antenna pattern a(θ, φ). The naı̈ve

approach would be to use rejection sampling. However this

has two drawbacks. First, we need to know a bound on the

maximum value that our antenna pattern will have. This can

be computed from the measured samples and can be stored

with the pattern. Second, rejection sampling is particularly

inefficient and slow if the bounding function does not tightly

enclose the function to be sampled. Usually one will use a

sphere as the bounding function, and especially for highly

directional antennas this will result in lots of samples to be

rejected.

Instead we opt to implement the sample warping approach

introduced by Jarosz et al. [9]. Here, we generate a uniform

distribution of samples on the sphere. Then we recursively

warp the samples according to the amount of energy contained

in each quadrant of a 1:4 subdivision of the pattern in the
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Fig. 2. Sample warping works by computing the relative magnitudes of the
function values of a 1:4 subdivision and then doing one vertical, and one
horizontal warping step.

(θ, φ) domain. We continue the recursion until a sufficient

distribution quality is achieved, e.g. at most one sample per

quadrant remains. One warping step is shown in Figure 2.

Jarosz describes how to compute the energy contained in

each quadrant by computing the integrals over the spherical

harmonic basis functions. The warped samples are then used

for generating the rays or photons. For an urban scenario we

typically use around five million initial photons. Details of

the photon path map algorithm can be found in our previous

publications [10], [8].

B. Receiving Antenna

Assuming that the antenna pattern was measured with the

antenna being fed a unit amount of energy, the pattern will

represent the actual antenna gain in our model. Because of

the reciprocity of the propagation path, we can take the same

pattern both for the transmitting as well for the receiving role.

When modeling the receiving antenna in the simulation, we

can compute the gain g(θ, φ) in a particular direction by using

Equation (3):

g(θ, φ) =
n−1
∑

l=0

l
∑

m=−l

cml yml (θ, φ) (5)

In a typical ray tracing algorithm, where we construct one

path from the transmitter to the receiver, we can use this to

weight the incoming path with the antenna gain. In our photon

path map algorithm, however we can use a different approach,

which is explained in Section V.

C. Rotating the Antenna Pattern

Both the transmitting and receiving antenna need to be

positioned and rotated in the simulation. For the Tx antenna,

we could simply transform the generated rays by the rotation

matrix. For the Rx antenna however we would like to rapidly

move and rotate it, to interactively explore the simulation

environment. Hence we need to rotate the whole antenna

pattern in the spherical harmonic basis. We implemented the

method described by Blanco [11], which is accurate and fast

enough for our purposes. We use this method for both the Tx

and the Rx antenna pattern. Also see the next section for how

the transformed Rx pattern is used in the photon path map

algorithm to evaluate the final signal strength.

A more simple approach can be used in a traditional ray

tracer. When a path from the Tx to the Rx antenna has

been created, the last path segment is simply transformed by

the inverse rotation matrix, to put the ray path in the local

coordinate system of the antenna. This is done using a standard

3 × 3 matrix once for each ray, instead of a set of l × l

(l ∈ 1 . . . n) matrices needed for a spherical harmonic rotation

once for the simulation. Hence the SH rotation is more difficult

to implement, but much more efficient in the end.

V. ENCODING IRRADIANCE

As previously said, a traditional ray tracer would compute

propagation paths between a fixed Tx and Rx station. Our

photon path map however computes the propagation of all

rays emanating from a transmitting antenna. The result of the

algorithm is a 3D buffer of voxels, each containing an average

signal strength, or irradiance.

We now propose to extend this method to also include

directionality. The goal is to encode the direction from which

the propagation paths are coming. Again, we will use the

spherical harmonics basis to store the incoming directions per

voxel. The advantage is that it compresses the amount of data

considerably. The disadvantage is however that it assumes

rather smooth, slowly changing irradiance. Hence for each

voxel we store spherical harmonics coefficients:

cml =
4π

|V |
∑

p∈V

Φ(p) · yml (θ(p), φ(p)) (6)

Where V is the set of photons in the current voxel, p is a

photon passing through the voxel and Φ(p) is the flux carried

by this photon.

For every SH basis function we create a 3D buffer of

coefficients. For evaluating the intensity of the received signal,

we simply place the Rx antenna at the appropriate place in the

3D buffer and compute the total intensity s as received by the

Rx antenna as:

s(x) =

∫

Ix(s)aRx(s)ds = 〈cx | cRx〉 (7)

Where x is the point in space to be queried, Ix is the irradiance

function, aRx(s) is the Rx antenna pattern, cx is the vector of

SH coefficients of the irradiance at this point, and cRx is the

vector of SH coefficients for the Rx antenna. So the evaluation

simply reduces to a scalar product of the two SH coefficient

vectors.

VI. RESULTS

We used three antenna patterns with very different charac-

teristics for our experiments. The PULA and SPUCA patterns

are by Schneider [12]. The plaster antenna pattern is by

Kellomäki [13]. For each antenna we computed the spherical

harmonic projection using 8,000 stratified Monte Carlo sam-

ples, using an average of the six nearest samples and using

basis functions up to degree seven.

For comparison with Landmann et al. [1] we computed the

normalized mean squared error (NMSE) as per their definition:

NMSE =
E((f − f̃)2)

E(f)
(8)

We also computed the unnormalized mean squared error

(MSE). Both are displayed in Table I. Landmann et al. report



Pattern MSE NMSE

Plaster -27.83 dB -25.44 dB

PULA -17.96 dB -14.24 dB

SPUCA -31.56 dB -29.05 dB

TABLE I
MSE AND NMSE FOR THE THREE DATA SETS.

Pattern Rejection Warping
Sampling

Plaster 43.29 sec 2.84 sec

PULA 21.45 sec 2.86 sec

SPUCA 12.69 sec 2.86 sec

TABLE II
THE PERFORMANCE OF THE RAY SAMPLING, FOR FIVE MILLION PHOTONS,

SHOWING BOTH REJECTION SAMPLING AND THE SH WARPING METHOD.

a range of the NMSE of −15 to −30 dB for about 225 to 900
coefficients. For the same accuracy we only need 64 coeffi-

cients. Furthermore, our pattern accuracy is not depending on

the antenna rotation, which is an advantage over the EADF

method.

The plaster antenna pattern is very simple, consisting only

of one main lobe. It can be approximated very well by the

SH basis. The PULA pattern is much more difficult, since

it contains several detailed components, which correspond

to the higher frequency SH basis functions. This can be

seen in Figure 1 in the absolute error plot. Here, the PULA

pattern shows characteristic horizontal lines, which cannot be

approximated by the SH basis functions of order seven. The

SPUCA pattern on the other hand can be approximated very

well.

One problem that appears with the spherical harmonic basis

is the Gibbs phenomenon, or ringing. At certain, discontinuous

points, the reconstructed function will show ripples. The same

problem occurs with Fourier transformations and other basis

functions and is not specific to our basis choice. This can lead

to negative values in the reconstructed antenna pattern, and

also influences the approximation quality in positive regions

of the function. The negative values need to be filtered out,

when using the pattern as a basis for a distribution function.

This happens visibly in the PULA antenna pattern, but not in

the other two patterns, since they are very smooth and can be

approximated very well by the SH basis.

In Table II we show the performance of the ray sampling

for the Tx antenna. The naive rejection sampling is 4-15 times

slower than the SH warping method. Both methods were im-

plemented on the CPU, taking advantage of all available cores

(i7 920, QuadCore, 2.7GHz). The SH warping implementation

of Jarosz on the GPU is even faster still. However the sampling

performance is not the bottleneck in our algorithm, using

the warping method. Tracing the rays and estimating the ray

density now takes up almost all the computation time. The

plaster antenna is a worst case for the rejection sampling, since

it is highly directional, and thus many samples are rejected.

The SH warping shows constant performance, independent of

the pattern shape, which is expected.

In Figure 1 we show a volume rendering of all three data

sets used. Again, we used our photon path map algorithm

using five million photons. The rendering itself shows a cut

through the 3D volume, rendered using our proprietary ray

casting volume renderer, which allows us to explore the 3D

volumes created by our simulations.

VII. CONCLUSION

We have presented a method to approximate antenna pat-

terns in the spherical harmonics basis, and to incorporate

them in a ray tracing propagation framework. Both the Tx

and the Rx antenna can be modeled by our approach. The

SH representation is very compact but still very accurate, as

shown with our test data sets. Also we showed how to encode

directional irradiance using the spherical harmonics basis. In

the future, we would like to test our irradiance encoding

against measured values, to see if the accuracy is good enough.

However, measurements with directional resolution is difficult,

so this remains an interesting problem.
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