
Real-time Visualization of Wave Propagation

Arne Schmitz and Leif Kobbelt
Computer Graphics Group
RWTH Aachen University

{aschmitz,kobbelt}@cs.rwth-aachen.de

Abstract: In this work we present a method to visualize the wave propagation mecha-
nisms of wireless networks at interactive rates. The user can move around transmitting
nodes and immediately sees the resulting field strength for the complete scenario. This
can be used for rapid optimization of antenna placement, or for visualizing the cover-
age of mobile stations, as they move through a simulation. In a preprocessing step we
compute the wave propagation for a distinct set of transmitter positions. Whereas in
the visualization phase we use these precomputed maps to do a fast interpolation using
a current graphics card.

1 Introduction

The computation of wave propagation for microwave transmitters is a well researched
topic and of interest in different areas of the networking community. First we can use
wave propagation prediction to optimize the placement of antennas for fixed transmitter
stations. In many cases it is not practical to tentatively setup a transmitter and change its
location if area coverage turns out to be insufficient. Therefore a simulation of the pathloss
for the area of interest is needed to choose an optimal transmitter location.

Second, wave propagation prediction is of interest when simulating mobile wireless net-
works. Here we want to know the pathloss for two possibly moving stations. This usually
requires recomputing a lot of propagation paths every time a sender moves and thus pro-
hibits a real-time evaluation of the simulation. We will show how this can be avoided.

1.1 Related work

Different methods of wave propagation are for example described in [SM00], [WB88],
[WWW+05b], [WWW+05a]. These methods use different approaches for the prediction
of the field strength. In general radio waves can be described by geometrical optics, as
a propagation along rays. Every time a ray hits an object, it will be scattered, reflected,
transmitted, diffracted or absorbed. This leads to quite complex propagation patterns, all
of which should be modelled correctly to get a good result. This behavior can be achieved
by different algorithms that are either based on empirical or physical models. Both differ
in computation complexity and the accuracy that can be achieved.

First there are empirical models, that try to fit a more or less simple function to the pathloss.
One of the most widely used empirical models is the Walfish-Ikegami-Model [WB88]. It
takes into account multiple rooftop-to-street diffractions, depending on the distribution of
buildings. This is a good approximation for microcellular urban scenarios where rooftop
diffraction is dominant. Although this model is very fast to compute, it fails to represent
propagation paths that are produced by reflection on building walls. Therefore this model
is only partially useful.

Most of the other algorithms fall into the category of deterministic models. These methods
compute the wave propagation by tracing rays through the scene from which the pathloss
can be derived. Usually this can be done either from the radiation source, or from the re-
ceiving position. Ray launching algorithms shoot rays from the sender, while ray tracing
algorithms go the other way around. The problem with these models is that they require
an enormous amount of rays for a decent estimate of the pathloss. Therefore most algo-
rithms take half a minute to about an hour for the computation of the pathloss at a single
transmitter position, considering every point in the scene. Interactive simulation rates with
moving senders are thus not possible.

One example of a ray launching algorithm is given in [SM00]. Here the rays are traced
through a uniform grid to produce a pathloss sampling. A hybrid model that uses both ray
propagation techniques and an underlying empirical model is described in [WWW+05b]
and [WWW+05a]. This so called dominant path prediction is able to cut down on the
computation complexity, so that one simulation can be computed in about 30 seconds to a
couple of minutes at most. Yet this is still not enough for interactive visualization.

1.2 Overview of the algorithm

In our work we also use a ray launching algorithm to produce a pathloss image of the scene,
called the Photon Path Map [SK06]. It does not really matter which algorithm one chooses,
since the visualization step is independent from the chosen propagation algorithm. We use
a precomputed set of pathloss images to interpolate on the fly a new image for the updated
sender position. It will be shown that this can be done in real time using current graphics
hardware that is able to do the interpolation step.

The structure of the algorithm is very simple and straightforward. First, we let the user
specify the scene geometry and mobile transmitter properties. This includes the different
materials for buildings and walls, as also the frequency and power of the senders used.
Following this, the user can specify an arbitrary number of points that are used for the
precomputed pathloss maps.

The next step is to use a ray tracing algorithm to compute the pathloss images for the
specified sender points. These maps are uploaded to the graphics card, where a new image
can be interpolated. Doing this via conventional methods using the main CPU is too costly
and results in non-interactive response times of the visualization tool.

Abbildung 1: On the left the geometry specified by the user can be seen. Then some seed-points are
created and initial pathloss maps computed. For a new sender point we choose the nearest maps (i.e.
the ones in the circle) and interpolate them to get a new pathloss map (right). The example is two
dimensional, but the scenarios can also be specified in three dimensions.

2 Simulation map generation

The precomputation of the pathloss- or simulation-maps consists of two steps. First the
user has to specify the scenario with all parameters and has to supply positions of the initial
simulation maps. Second the ray-tracing program has to generate the pathloss-maps. The
latter part is done by using an algorithm called the Photon Path Map, which is related to
the Photon Map known from computer graphics [JC95].

2.1 Geometry specification

The scene consists of three dimensional polygonal meshes, in particular triangular meshes.
They can be specified by the user through an editing tool or exported using standard 3D
software. Furthermore the user supplies material properties for the building walls, like
reflectivity and transparency. These values can be taken from direct material measurements
or parameters can be fitted for a scene using a set of on-site measurements. In our tests we
have used a map of our institute’s building and fitted the material parameters according
to measurements taken inside the building. The model can be seen in Figure 1. The same
image also shows the initial sender positions that are specified by the user.

2.2 Photon Path Map generation

For the computation of the pathloss-maps we use an algorithm called the Photon Path Map.
It is derived from the Photon Map algorithm, which is widely used in Computer Graphics
for illumination purposes [JC95]. For details on the Photon Map we refer to the original
work. Here we just sketch out how our extension to the algorithm works.

Similar to the original Photon Map approach, we trace photon particles emanating from the
sender through the scene. When the photon hits an object, it is either reflected, transmitted
or absorbed. Also photons passing close to object corners might get diffracted. Every time
such an interaction happens, we store a new path segment in our Photon Path Map, noting
the trajectory of the photon. After shooting many thousands of these photons, we have a
data structure that has a record of all photon trajectories (or paths) through the scene.

Initially one single photon represents 1
n th of the flux emitted from the sender, if the sender

has emitted n photons. To get an estimate for the pathloss at a given point in space, we need
to make a density estimation over the photons. We do this by modelling a kernel density
estimator that integrates over all the photons passing through or near the same point in
space. How this is done explicitly is beyond the scope of this paper and is described in
more detail in [SK06]. We just note that this is done in a matter of seconds to a few
minutes at most and leaves us with a volume image containing the pathloss in the scene
for one given sender position.

3 Real-time display

The goal of this work is to be able to visualize the radio wave propagation of moving
senders in real-time. In the last section we have seen how to precompute a set of wave
propagation simulations. So now we have a set of points pi with an associated pathloss
map mi (in the following also called volume image). These maps are defined as a set of
voxels vjkl ∈ {0..X} × {0..Y } × {0..Z}, where X , Y and Z are the number of voxels
of each dimension of the 3D pathloss map. A voxel is a discrete cell in a uniform three-
dimensional grid, similar to the pixel in a two-dimensional image.

3.1 General interpolation

It is now an obvious step to interpolate these known data points to get a new one. For
this we sort all the points into a kd-tree [Ben75] in advance and do a K-nearest neighbor
lookup when we want to do an interpolation. This can be done very efficiently and leads
us to the following formulation, which is similar to a standard kernel density estimator:

ms =

∑k
i=1

mj

‖pj−ps‖d∑k
i=1

1
‖pj−ps‖d

(1)

Where ps shall denote the new position of the sender and pj with 1 ≤ j ≤ k are the K-
nearest neighbors of ps. The mj are the according pathloss-maps. The value d is a damping
factor which influences the weight of more distant neighbors. Typically one would use
values in the range of d = 1 to 3 for this, where d = 1 translates to a linear filter kernel for
the sample points.

Abbildung 2: First the algorithm selects the nearest matching pathloss maps (left), blends them to a
new image (middle) which can then be displayed for interactive viewing (right).

In the above equation, when we write mj

‖pj−ps‖d the pathloss-image mj is said to be weigh-

ted with the factor 1
‖pj−ps‖d . It is clear that this can amount to a lot of multiplications,

since every voxel of mj has to be weighted, and then all maps have to be summed up and
as a last step the resulting image has to be normalized. Doing all this on the conventional
CPU is very slow, since each pathloss map can be up to several megabytes in size. In our
tests we achieved approximately 1 to 4 frames per second on a 2.2 GHz machine, which is
far from being interactive, let alone real-time. One of the reasons for this procedure being
so slow is also the relatively slow upload of texture images onto the graphics card. After
each interpolation we have to upload the new 3D texture to the graphics hardware. Once
the textures are residing in the GPUs RAM we can manipulate them without great delay.
The GPU also has the advantage of a very high-bandwidth local memory access, in our
case more than 30 gigabyte per second. This fact, combined with the parallel architecture
of a GPU, allows us to overcome the problems that we see when using the main CPU for
interpolation.

Additionally a visibility test can be used to select only sample points that are visible from
the new sender position. For example it might not make much sense to incorporate a path-
loss image in the interpolation, if the new sender position and the interpolation sample
are divided by a massive concrete wall. Then we would get a wrong interpolation estima-
te. The visibility test itself is done efficiently by utilizing the ray tracing algorithm from
the preprocessing step. The number of rays needed is constant and the ray tracer scales
logarithmically with the complexity of the underlying scene geometry.

3.2 GPU Interpolation

Since interpolation of the maps on the CPU is prohibitively expensive, we can instead do
the interpolation on a modern graphics processing unit (GPU). The pathloss-maps are vo-
lume images, i.e., three dimensional sets of voxels. Current generation graphics cards can
handle three dimensional images with ease and use them as textures for direct visualization
using incremental slicing techniques [WE98]. Interpolation on the CPU cannot compete
with this technique, because GPUs are highly parallelized. In our case for example we take
up to 16 volume images and blend them together. The GPU used is able to do the 16 texture
lookups entirely in parallel, whereas a standard CPU can only do them sequentially, or at
most do a few lookups in parallel if the volume images are stored interleaved in memory.
Also the GPU can process several voxels in parallel, i.e. the weighted adding can happen
for more than one voxel. On a CPU this also has to be done sequentially.

With the advent of programmable graphics hardware it has become possible to extend the
once fixed rendering pipeline and use it to do the costly image interpolation. The first step
is to upload the precomputed pathloss-maps onto the graphics card. There the maps are
stored as a set of 3D-textures, which we can use for rendering purposes, also see Figure 2.
In our implementation we use OpenGL as the basic graphics programming interface.

The interpolation of the images is done by rendering textured quadrilaterals and using so
called fragment programs [LBB03] to do an exact weighting of each texture. The algorithm
can be sketched like this:

gpu_interpolate(K, w):
generate new framebuffer
load fragment program p[K]
for each 3D texture t[i], i=1..K

compute weight w[i] and pass to fragment program
bind 3D texture t[i] to texture unit i

for each slice in the 3D texture
render quad using fragment program p[K]
copy framebuffer into 3D texture for display

The weights w[i] in the above code correspond to the weights computed in section 3.1. The
fragment program p[K] does K simultaneous texture lookups and blends the values ac-
cording to the interpolation weights, which are passed as local parameters to the fragment
program. The fragment program itself is:

!!ARBfp1.0
Temporary variables for color lookup:
TEMP col0, ..., colK;
TEMP sum;
Parallel texture lookups:
TEX col0, fragment.texcoord[0], texture[0], 3D;
...
TEX colK, fragment.texcoord[0], texture[K], 3D;

Abbildung 3: A set of screen aligned planes is intersected with the 3D volume resulting in a set
of slices (left). Then the slices are textured with data from the 3D volume (middle). Using a high
number of slices a continuous appearance can be achieved (right).

Weighted blending:
MUL sum, program.local[0], col0;
MAD sum, program.local[1], col1, sum;
...
MAD sum, program.local[N], colK, sum;
Return resulting color:
MOV result.color, sum;

END

Note that this interpolation happens in only one render pass, which ensures that the blen-
ding happens with the highest possible accuracy. Usually graphics cards store values only
with 8 bits of accuracy, but when doing arithmetical operations in a fragment shader, one
automatically uses floating point arithmetics.

It is also noteworthy that a single render pass can only be achieved, if the GPU used has
enough texture units. If we want to do an interpolation of the K-nearest neighbors, the
GPU has to provide K texture units, which can process all the volume images in parallel.
Otherwise one has to do several render passes. For example if the GPU supplies n texture
units and we want to do a K-nearest interpolation, with K > n, we need

⌈
n
K

⌉
render

passes. In each pass, we can interpolate n textures in parallel, and we have to incrementally
blend all render passes until the interpolation is completed, which gives a performance
penalty. However modern graphics cards supply quite a large number of texture units, so
that in our experiments we used a K-nearest neighbor interpolation with K = 16, on an
nVidia GeForce 7800 GTX GPU which also supplies 16 texture units. This is more than
enough to get a smooth looking interpolation.

3.3 Volume visualization

For the visualization of the interpolated image we use an algorithm described in [WE98].
It allows us to display a 3D volumetric image on a standard graphics card. The idea is
to intersect the 3D volume cube with n screen-aligned planes, which produces a set of
n slices through the volume (see Figure 3). The graphics card is able to compute texture

coordinates for these slices and use the 3D volumetric image to apply a texture to the
slices. When using a high number of slices (i.e. more than 100), a continuous appearance
can be achieved.

This rendering is very fast and scales with the number of slices used. If the number of
slices is too high, the pixel fill rate of the graphics card will be saturated and the rendering
frame rate will drop significantly. However, in our experiments we used between 500 and
1000 slices for rendering the images without a great performance loss. One can say that for
window sizes of up to 10002 pixels, 500 slices are a good tradeoff between visual quality
and efficient rendering.

4 Results

For testing of our method we have used a model of our institute’s building with 170 pre-
computed sender positions. The initial pathloss maps have been generated by a grid of
AMD Opteron nodes in less than 15 minutes. Each pathloss map is of size 256× 256× 4
and is 256 KBytes in size, using a logarithmic byte encoding for extended dynamic range.
This amounts to 42.5 MBytes of space, that are also needed for storage on the graphics
card. As one can see, much more sender positions or higher resolutions for the maps are
possible, since the used GeForce 7800 GTX is equipped with 512 MBytes of RAM. Ad-
ditionally the GPU can use up to 1 GByte of main RAM, accessing it through the PCI-
Express bus. This way almost 200 pathloss maps of size 256 × 256 × 128 can be used.
This is enough for fairly large 3D buildings. In general many scenarios will only be 2.5D
and a resolution of 256× 256× 4 will be enough.

Using the 170 pathloss maps and 16 nearest neighbors, we achieve the following rendering
speeds, when tracing some random movement path through the buildings on a 2.2 GHz
computer:

Method Resolution Slices FPS
CPU 256× 256× 4 1000 2.6
GPU 256× 256× 4 1000 102
CPU 512× 512× 4 1000 0.5
GPU 512× 512× 4 1000 45

The main problem here is the fill rate limitation of the GPU when rendering the complete
volume to the screen. The interpolation itself can run even faster, when using less slices
for the visualization. With 500 slices we get roughly 150 frames per second for the smaller
dataset. But obviously the visual quality gets better the more slices are used.

5 Conclusion

In this work we have shown a way to visualize the field strengths of moving senders in
real-time using current graphics hardware. Up to now it was not possible to interactively
move a sender around and have live feedback on the signal strength in the whole scenario.
We have shown that this is possible in a smooth manner using off-the-shelf graphics cards.
Compared to the naive approach using the computer’s main CPU we get 10 to 50 times
the rendering performance, depending on the size of the dataset. Interesting enough the
interpolation is much less a bottleneck than is the final rendering of the 3D image.

One possible next step is to combine this with a network simulator to have a live feedback
of the simulation in progress. For this multiple sender images might have to be blended
together, for example to show interfering ranges of the sending nodes. This would be a
good tool for designing, analyzing and understanding wireless networks.

Literatur

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative sear-
ching. Commun. ACM, 18(9):509–517, 1975.

[JC95] Henrik Wann Jensen und Niels Jørgen Christensen. Photon Maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects. Computers and Graphics, 19:215–
224, March 1995.

[LBB03] Benj Lipchak, Bob Beretta und Pat Brown. ARB Fragment Program Extension.
OpenGL Registry, August 2003.

[SK06] Arne Schmitz und Leif Kobbelt. Wave Propagation Using the Photon Path Map.
Bericht, Computer Graphics Group, RWTH Aachen University, 2006.

[SM00] M. Schmeink und R. Mathar. Preprocessed indirect 3D-ray launching for urban
microcell field strength prediction. In AP 2000 Millennium Conference on Antennas
and Propagation, April 2000.

[WB88] J. Walfisch und H.L. Bertoni. A theoretical model of UHF propagation in urban
environments. IEEE Transactions on Antennas and Propagation, 36(12):1788–1796,
December 1988.

[WE98] Rüdiger Westermann und Thomas Ertl. Efficiently using graphics hardware in vo-
lume rendering applications. In SIGGRAPH ’98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, Seiten 169–177, New
York, NY, USA, 1998. ACM Press.

[WWW+05a] R. Wahl, G. Wölfle, P. Wertz, P. Wildbolz und F. Landstorfer. Dominant Path Pre-
diction Model for Urban Scenarios. 14th IST Mobile and Wireless Communications
Summit, Dresden (Germany), 2005.

[WWW+05b] P. Wertz, R. Wahl, G. Wölfle, P. Wildbolz und F. Landstorfer. Dominant Path Pre-
diction Model for Indoor Scenarios. German Microwave Conference (GeMiC) 2005,
University of Ulm, 2005.

